Optimization of Neural Network Model Design: An Electoral Cooperative Particle Swarm Optimization Approach

نویسندگان

  • Desheng Li
  • Huibin Xu
چکیده

This paper proposes an electoral cooperative particle swarm optimization approach to optimize the model of neural network from both structure and linked weights. Different with other related research work, a new encoding method is adopted to divide the neural network into several modules, each of them corresponding to a sub-swarm. Based on the experiments on typical problems and classic dataset, the results show that the proposed algorithm outperforms all the compared ones in perspective of test error, correctness, connection number, and the CPU time of the training phase. Streszczenie. W przedstawionym artykule opisano zastosowanie metod optymalizacji roju cząstek do optymalizacji struktury i współczynników wagowych sieci neuronowej. Zaimplementowano nową metodę analizy, do dzielenia podzielenia sieci na moduły, reprezentujące mniejsze roje. Weryfikacja eksperymentalna i porównanie z metodami klasycznymi wykazały wysoką sprawność i skuteczność analizy. (Optymalizacja modelu sieci neuronowej z zastosowaniem optymalizacji roju cząstek ze współdzieleniem grup).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of ICDs' Port Sizes in Smart Wells Using Particle Swarm Optimization (PSO) Algorithm through Neural Network Modeling

Oil production optimization is one of the main targets of reservoir management. Smart well technology gives the ability of real time oil production optimization. Although this technology has many advantages; optimum adjustment or sizing of corresponding valves is still an issue to be solved. In this research, optimum port sizing of inflow control devices (ICDs) which are passive control valves ...

متن کامل

Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization

Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...

متن کامل

Optimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network

This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and th...

متن کامل

OPTIMAL DESIGN OF ARCH DAMS BY COMBINING PARTICLE SWARM OPTIMIZATION AND GROUP METHOD OF DATA HANDLING

Optimization techniques can be efficiently utilized to achieve an optimal shape for arch dams. This optimal design can consider the conditions of the economy and safety simultaneously. The main aim is to present an applicable and practical model and suggest an algorithm for optimization of concrete arch dams to enhance their seismic performance. To achieve this purpose, a preliminary optimizati...

متن کامل

AN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION

This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012